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Applicability to ESE MeasurementsApplicability to ESE Measurements

• Accurate monitoring and measurement of the

global precipitation, evaporation and cycling of

water is required to better understand earth’s

climate system

• Dual frequency/polarization radars are necessary to

monitor precipitation patterns

• Antenna and RF front ends that have low cost, low

mass, electronic scanning capabilities and are easily

deployed, are preferred

• Develop novel dual frequency/polarization array

and associated electronics based on System-on-a-

Package (SOP) approach



5

Proposed TechnologyProposed Technology

• Proposed Solution: System-on-a-

Package (SOP) RF Front End

• Investigate multi-layer, low cost

Liquid Crystal Polymer

Technology (LCP)

• Two sets of microstrip antennas

on different layers: 14 GHz array

on one layer and 35 GHz array

on other layer (two combinations

were investigated)

• Planar and vertical feeding

networks and interconnects

• Usage of integrated RF MEMS

phase shifters for electronic

scanning
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Enabling TechnologiesEnabling Technologies

in the futurein the future
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Why LCP?Why LCP?

• Electrically: r~3, tan =0.002-0.0045 (2-110 GHz)

• Its near hermetic nature suits it as both a mm-wave substrate

and package

• Low moisture permeability (<0.04%)

• LCP films from 25 – 100 μm thick can be conveniently

laminated for multilayer structures used in system on package

(SOP) designs

• $Low cost(~$5/ft2)$

• Micromachining ability

• Tailoring of CTE (4-30 ppm/oC)

• Recyclable

• LCP is flexible, and antennas fabricated on it may be rolled or

molded into desired shapes

• Best mix of performance, mechanical integration

compatibility, and economic viability
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2-5/8” Diameter

Flexibility TestingFlexibility Testing
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For extreme flex testing (marker)

frequency shift was only 0.29%

Antenna flexing does not 

affect performance
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Array OptimizationArray Optimization

• Cross – polarization level is higher at 35 GHz

• Feed line radiation affects the 35 GHz pattern significantly

• Different configurations were tried

– 35 on top layer with 14 embedded

– 14 on top layer with 35 embedded

– Different substrate thicknesses to reduce cross polarization

levels, blockage effects and cross-coupling effects

– Separating the patches and the feed layer
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Series Fed Aperture Coupled (SFAC) ArraysSeries Fed Aperture Coupled (SFAC) Arrays

• 35 GHz patches on a thinner layer to reduce cross-

polarization

• Feed networks for both the arrays on a separate layer

• Electromagnetic coupling through slotted ground

• Series feed to potentially minimize the number of

switches
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2X2 SFAC Array2X2 SFAC Array

A linear sub-array is formed with two types of

elements: ‘Element 1’, for which the feed

network is terminated in open,

‘Element 2’, for which the feed network is

terminated in a 50 Ohm load (Other antenna

elements act as a load for this element)

The elements within a linear sub-array are fed in

series.
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Aperture Coupled 14/35 GHzAperture Coupled 14/35 GHz

Fabricated 2x2 Antenna DesignsFabricated 2x2 Antenna Designs
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Radiation Pattern MeasurementRadiation Pattern Measurement

Set-UpSet-Up

Fixture, measurement, and photo done by Dr. George Ponchak at NASA, Glenn.
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2X2 SFAC Array 2X2 SFAC Array –– Return Loss Return Loss
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2X2 SFAC Array2X2 SFAC Array–– Radiation Patterns Radiation Patterns

Measured Efficiency ~ 77%
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RF MEMS SwitchesRF MEMS Switches

Top Plate Top PlatePull-Down Electrode

and Bottom Plate

Dielectric

Air-bridge

RF In RF OutPull-Down

Electrode

Cantilever beam

Electrostatic actuation (5-60V)

Low loss (up to W-band) and low cost

High linearity – no distortion

No power consumption

Switching time 1-20 μs

IC fabrication compatible

Packaging/Reliability??
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Switches

Switches

Integrated 2X2 SFAC Array withIntegrated 2X2 SFAC Array with

RF MEMSRF MEMS
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Measured ResultsMeasured Results

Excellent return loss characteristics

SPDT switch on 

LCP for polarization

selection
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The springs anchor the

membrane to the finite ground

coplanar waveguide’s (FGC’s)

ground planes [not shown].  A

special process was developed

to fabricate the MEMS switches

on and LCP substrate.

Dark brown – electroplated gold

Yellow – evaporated gold

Membrane

Signal Line

Signal Line

SpringSpring

RF MEMS Switch on LCPRF MEMS Switch on LCP
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Packaged Cavity over Air-BridgePackaged Cavity over Air-Bridge

MEMS SwitchesMEMS Switches

2 mil deep laser-

micromachined cavities

on the underside of

the packaging layer

are aligned over an LCP

substrate with MEMS

switches.  Measurements

are made through the

feedthrough holes.
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CB-FGC Cross SectionsCB-FGC Cross Sections

Z0 varies by only 4

between the three different

transmission line cross-

sections!

So can thin film LCP packages be designed

with nearly arbitrary dimensions to accommodate

the RF MEMS switches?
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RF MEMS Measurements: RFRF MEMS Measurements: RF

Characteristics of Unpackaged vs. Packaged SwitchesCharacteristics of Unpackaged vs. Packaged Switches
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Fabricated 4-bit Phase Shifter
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Capable of phase shifts from 0o to 337.5o in 22.5o increments

LCP

Gold

MEMS Switches
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4-bit MEMS

Shunt Phase Shifter

“Tree-Junction”

• One signal path IN

• Four possible signal paths OUT
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Packaged 4-bit Phase Shifter

Loss ~ 0.24 dB/bit @ 14 GHz

Shift in beam < 1o for error ~ 4-5o
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ConclusionsConclusions

• Demonstration of the excellent electrical and packaging

performance of LCP organic materials up to 110 GHz

• Development of 2x2 dual frequency/polarization array (14/35

GHz) on lightweight, flexible, multilayer LCP substrates with RF

MEMS switches

• Development of first packaged organic MEMS switch with low

loss up to 40 GHz (<0.3 dB)

• Development of first low loss packaged 4-bit RF MEMS phase

shifter (0.24 dB/bit @ 14 GHz)

• Multilayer SOP RF front ends a viable candidate for NASA high-

frequency systems and applications
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